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ABSTRACT

We introduce a big data platform that provides various ser-
vices for harvesting scholarly information and enabling ef-
ficient scholarly applications. The core architecture of the
platform is built on a secured private cloud; it crawls data
using a scholarly focused crawler that leverages a dynamic
scheduler, processes data by utilizing a map reduce based
crawl-extraction-ingestion (CEI) workflow, and stores data
in distributed repositories and databases. Services such as
scholarly data harvesting, information extraction, and user
information and log data analytics are integrated into the
platform and provided by an OAI and RESTful APIs. We
also introduce a set of scholarly applications built on top of
this platform including citation recommendation and collab-
orator discovery.

Categories and Subject Descriptors

H.3.7 [Information Storage and Retrieval]: Digital Li-
braries; H.3.3 [Information Search and Retrieval]: Text
Mining

Keywords
Scholarly Big Data, Information Extraction, Big Data

1. INTRODUCTION

The recent decade has witnessed a clear growth in elec-
tronic publishing, with a large amount of scholarly data now
available online. Using Microsoft Academic Search (MAS)
and Google Scholar, we estimated that there are at least
114 million English-language scholarly documents or their
records ' accessible on the Web and new scholarly doc-

!By scholarly documents, we mean journal and conference
papers, dissertations and masters theses, academic books,
technical reports, and working papers. Patents are excluded.
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uments are generated at a rate at tens of thousands per
day [21]. To enable easy access of online scholarly data,
academic search engines and digital libraries usually need
to crawl scholarly documents from the Web, extract useful
information from documents, and then ingest (store and in-
dex) that information and the documents. For small scale
(less than millions) and slowly growing (less than thousands
per day) data, traditional client/server architectures might
be able to handle the data throughput by using multiple
coupled physical machines, single pipeline data processing,
and static crawling strategies, as was done previously by
Citeseer [13]. However, many challenges arise in accessing
fast growing, large scale, and heterogeneous “scholarly big
data” using such traditional systems.

First, traditional architectures may not easily scale up to
satisfy the storage and service requirements for fast growing
data. To handle the increasing scale of data, more machines
are usually added into existing architectures for storage and
web services, which increases the risk of hard drive or con-
troller failures in addition to the cost of human labor and
management. Furthermore, more sophisticated application-
oriented services other than just traditional user-oriented
services (e.g. paper search and download) should be pro-
vided to enable more advanced and useful scholarly appli-
cations. For example, services such as author profiling or
disambiguation are helpful for collaborator recommendation
or expert discovery. However, building these services on
large scale data not only requires powerful computational re-
sources, but, more importantly, they need a smart resource
management and schedule platform that efficientially and
dynamically allocates its resources.

Second, standard systems may not well support the high
data throughput due to the bottleneck imposed by a single
pipeline. For example, the traditional Citeseer platform can
only support an ingestion rate of around 2000 documents
per day. To scale up to 100 times that rate or larger, simply
increasing the number of pipelines by adding physical re-
sources might not be efficient due to the variety of latencies
characteristic of different components of the pipeline (i.e.
crawling, extraction, and ingestion). Thus, a better data
processing framework and set of tools are needed to achieve
higher data throughput.

Third, classical approaches may not efficiently collect data
due to inaccuracy of data filtering and latency and lack of
coverage caused by static crawling strategies. Static crawling
strategies use a crawling seeds list that cannot be updated in



an automated and efficient manner. We need better strate-
gies to manage the seeds list so that new sources of data
can be discovered and invalid sources can be ruled out in
a timely fashion. Additionally, we need accurate document
classifiers to filter out non-scholarly documents and classify
scholarly documents into different categories, not only based
on publishing formats, but also into fields or subjects.

In light of these challenges, we propose a platform that can
effectively harness scholarly big data, based on the current
CiteseerX system 2. The core architecture of the platfor-
m is built on a secured private cloud using a virtualization
technique powered by VMware, which provides an efficient
and feasible means of resource allocation and failure control,
where data is harvested based on a scheduled crawl, pro-
cessed in a map reduce framework, and stored in both SQL
and NoSQL databases as well as distributed repositories us-
ing the Hadoop distributed file system (HDFS). Services
for scholarly data harvesting, information extraction, and
user or log data analytics are integrated into the platform
and provided with via an Open Archives Initiative Protocol
(OAI)? and a RESTful API. These services allow for the de-
velopment of various scholarly applications such as citation
recommendation and expert discovery. The contributions of
this paper can be summarized as follows:

e We introduce a scholarly big data platform that can
provide a variety of services for mining scholarly data
and building scholarly applications.

e We share our practical experiences in building such a
platform including: setting up the private cloud, de-
veloping a scholarly focused crawler, implementing a
crawl-extraction-ingestion workflow, making effective
us of distributed repositories, and so on.

e We summarize the challenges, practical lessons and
possible future opportunities for mining scholarly big
data through multiple case studies involving services
and applications that have been built using this schol-
arly data platform.

2. THE SIZE OF SCHOLARLY DATA

The first two questions to ask are “how big is the scholarly
data?” and “how much of it is freely available?” To answer
them, we estimate the number of scholarly documents avail-
able on the Web, using capture/recapture methods, by s-
tudying the coverage of two major academic search engines:
Google Scholar and Microsoft Academic Search [21]. Our
approach assumes that each academic search engine samples
the Web independently for papers and contains a subset of
available documents. Next, we consider each search engine
to be a random capture of the document population at a
certain time. Using the intersection of these two captures,
we estimate the entire size of the population. Since ob-
taining the entire database of both academic search engines
was not feasible, we approximate this overlap by randomly
sampling from each search engine and then determining the
size of the overlap in this random sample. Our results show
that at least 114 million English-language scholarly docu-
ments are accessible on the Web, of which Google Scholar
has nearly 100 million. Of these, we estimate that at least

http://citeseerx.ist.psu.edu/
3http://www.openarchives.org/

Table 1: The Estimated Number of Scholarly Doc-
uments on the Web in Different Fields.

| Discipline [ Size in MAS [ Estimated Size [ public ‘
Agriculture Science 447,134 1,088,711 12%
Arts & Humanities 1,373,959 5,286,355 24%
Biology 4,135,959 8,019,640 25%
Chemistry 4,428,253 10,704,454 22%
Computer Science 3,555,837 6,912,148 50%
Economics & Business 1,019,038 2,733,855 42%
Engineering 3,683,363 7,947,425 12%
Environmental Sciences 461,653 975,211 29%
Geosciences 1,306,307 2,302,957 35%
Material Science 913,853 3,062,641 12%
Mathematics 1,207,412 2,634,321 27%
Medicine 12,056,840 24,652,433 26%
Physics 5,012,733 13,033,269 35%
Social Science 1,928,477 6,072,285 19%
Multidisciplinary 9,648,534 25,798,026 43%
Total Sum 121,223,731 | 36,703,036

Table 2: Physical Servers for Private Cloud

Server Type Ftcores’ Memory Storage’ Quantity

Processing 12 96GB 1TB 5
Storage 12 32GB 30TB 2

1 CPU frequency 2.5GHz.

2 After RAID 5 for each unit.

27 million (24%) are freely available since they do not re-
quire a subscription or payment of any kind. In addition,
at a finer scale, we also estimate the number of scholarly
documents on the Web for fifteen fields: Agricultural Sci-
ence, Arts and Humanities, Biology, Chemistry, Computer
Science, Economics and so on as defined by Microsoft Aca-
demic Search. In addition, we show that among these fields
the percentage of documents defined as freely available varies
significantly, i.e., from 12 to 50% [21], as shown in Table 1.

Based on these numbers, we found that our existing sys-
tem, namely CiteseerX, covers only around 10% of these
freely available scholarly documents. This provides strong
motivation for scaling the system up to a newer, more ad-
vanced big data platform that has the capability of han-
dling 100 million scholarly documents and ultimately facili-
tate larger scale scholarly services and applications.

3. ARCHITECTURE

The overall platform is composed of three layers, as shown
in Figure 1. The architecture layer demonstrates the high-
level system modules and the work flow. It can be divided
into two parts: the frontend (Web servers and load balancer-
s) that interacts with users, processes queries and provides
different web services; the backend (crawler, extraction, and
ingestion) that performs data acquisition, information ex-
traction and supplies new data to the frontend. The services
layer provides various services for either internal or external
applications by APIs. The applications layer lists scholarly
applications that build upon the services.

3.1 Virtual Infrastructure

The CiteseerX architecture used to be built on 18 physical
servers. Since February, 2013, the entire system was migrat-
ed to a private cloud, with this infrastructure illustrated in
Figure 2. The cloud is built on top of two storage server-
s and five processing servers, with specifications tabulated
in Table 2. We use VMware EXSi 5.1 as the hypervisor
installed on each processing server.
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Figure 1: Overview of the platform.
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Figure 2: The private cloud infrastructure.

Migrating the entire system to a private cloud has proven
to be the most cost-effective solution in upgrading the infras-
tructure [33]. The migrated system has become quite power-
ful due to the enhanced hardware and the cloud hypervisor
also offers more reliability, scalability, maintainability and
efficiency. First, if one processing server fails, the hypervi-
sor can respond and move VMs on that server to another
processing server in a matter of minutes. Second, a smaller
footprint on the data center equates to less physical space
as well as lower operating temperatures and thus more effi-
cient use of power. This allows us to add additional physical
servers to our cluster should we need more processing power
or storage. Third, it is convenient to create and delete a
new VM. By using a template based workflow, setup time
can be reduced from days to minutes.

3.2 Focused Web Crawling

The crawl module actively crawls PDF files from the Web.
These PDF files are first imported into the crawl database
and repository before being passed to the extraction module.
The web crawling process ensures that all documents avail-
able have (or used to have) at least one valid URL where
it can be downloaded by an individual user. The focused
crawler still faces some challenges for gaining higher crawl-
ing precision, recall/coverage and freshness.

The precision was achieved by applying a whitelist poli-
cy [32]. For each document URL (URL linking directly to a
PDF file), we record its parent URL, which is the URL of a
web page (most likely in HTML format) which contains the
document URL. The crawl database contains more than 13

million document URLs and 2.4 million parent URLs. To
apply this policy, we first create a whitelist by selecting high
quality parent URLs which contain at least one ingestable
document. We also setup the crawler so it does not go be-
yond the domains of whitelist URLs. Before the introduc-
tion of a whitelist policy, CiteSeerX used a blacklist file to
filter out web domains it was not allowed to go or “crawl
traps” it needed to avoid. While this policy gives more free-
dom for the crawler to visit new websites, it wastes a good
deal f bandwidth for downloading non-academic documents.
The CiteSeerX team also received complaints from websites
with none or poorly written robots.txt files. As a result
of the whitelist policy, the fraction of academic documents
has increased from 30% to about 50% and we rarely receive
security complaints by web masters.

While our initial focus was on papers pertaining to com-
puter and information sciences, we have recently increased
the diversity in three ways. First, we encourage users to
submit URLs that we then crawl with a higher number of
maximum hops than a regular crawl. This not only help-
s us locate documents but also new parent URLs that we
can potentially use to obtain even more documents. Second,
we download additional documents through crawl-truncated
URLs in order to dig into the directories of discovered re-
mote servers. Third, we import paper collections from other
repositories such as arXiv and PubMed to incorporate pa-
pers from a breadth of disciplines. Recently, Microsoft A-
cademic Search released their paper URLs and by crawling
the first 7.58 million, we have collected 2.2 million docu-
ments?. This significantly expands the domain coverage of
the CiteSeerX collection.

Freshness is a quality strongly associated with coverage,
i.e., it reflects the coverage of recent documents. We achieve
freshness by periodically updating the whitelist and recrawl-
ing URLs using a crawl scheduler, which we called Scheduled
Crawl. Previously, user-submitted URLs were mixed with
URLs into the Scheduled Crawl. Recently, we changed this
by implementing two crawling instances, one for a scheduled
crawl and another that is dedicated to crawling user sub-
mitted URLs. In this way, we prioritize the latter and make
documents from these user-driven searches appear sooner
in our production. The cycle for a scheduled crawl usually
takes at least a few weeks before the whitelist is updated. A
user-submission crawl cycles each day.

Our biggest challenge in the foreseeable future will still be
coverage as the key issue is to find good seed URLs which
lead to new academic documents. One way is to solve this
problem is to take advantage of giant general search engines
such as Google or Bing to retrieve papers by sending queries
to their APIs. However, we are bounded by the usage lim-
it of those APIs. As a result, obtaining a large corpus of
documents is time-consuming and as a result, we need to
carefully choose the queries we make in order to retrieve
the most important papers first. An alternative is to lever-
age professional homepages of researchers [14], which usually
contain fruitful and fresh sources of academic publications.
However, the primary challenge facing a topical crawler is to
effectively recognize these homepages among the myriad of
other pages normally found in an institutional website such
as course sites, news pages, student profiles, etc.

4URLs that match our blacklist were not crawled. A signif-
icant fraction of URLs do not link to PDFs, i.e., they link
to metadata pages, so they do not give us full text files.



3.3 Document Classification

In CiteSeerX, the document classification module sepa-
rates academic and non-academic documents and passes a-
cademic documents to the ingestion module. The text con-
tent is first extracted from PDF files. The older classifica-
tion scheme utilized a rule-based approach in which a list of
keywords/phrases are searched for in the text body, which
is efficient and achieves an acceptable accuracy. A recent
study based on a sample of 1000 papers randomly sampled
from CiteSeerX database reveals precision of 90% and recall
of 80% for academic documents.

To further improve the performance, we developed binary
classification for categorizing crawled documents based on
SVM which takes advantages of structural information from
papers, such as document size, page size, aspect ratio, font
size combined with keywords [8]. Moreover, we are working
on classifying academic documents into multiple categories
such as papers, books, reports, slides, etc. We have defined a
complete schema for all categories in their scope and extract
various features from each category. The goal is to provide
CiteSeerX with functionality to achieve a higher quality clas-
sification in a timely manner and provide multiple formats
of documents with topical linkages.

3.4 The CEI Workflow

The crawl-extraction-ingestion (CEI) workflow is the ma-
jor part of the backend and continuously feeds new data into
the index, database and repository. Fully automating and
paralleling the workflow is highly desirable for CiteSeerX to
scale up to the big data regime. We are developing a CEIL
pipeline (CEIP) to automate this workflow. The key com-
ponents are a MySQL database and a job scheduler/tracker
(JST). The database stores the job information including
the crawler download path, the batch job ID, job status and
corresponding timestamps. The JST periodically scans the
crawl download directories for recently finished crawl job-
s, automatically configures and starts the crawl document
importer (CDI) to import the crawled documents. It then
retrieves documents from the crawl database and distributes
them to the extraction module. Each batch job has a unique
job ID and a job status. The JST also periodically scans the
extraction output folder for recently finished jobs and sends
them over to the ingestion module. Both the extraction and
ingestion modules can be parallelized using the Map Reduce
method. The CEIP is depicted in Figure 3.

3.5 Distributed Repositories

CiteSeerX currently has a single repository of about 6 ter-
abytes containing over 4 million document folders. Each
document folder contains at least six files include the origi-
nal PDF /postscript files and the associated metadata files.
While it is relatively easy to read/write from a single reposi-
tory, this presents potential scalability problems. First, due
to some system constraints, the maximum size of a parti-
tion is about 10TB in the virtual environment. We can
easily break this limit by doubling our collection, so a sin-
gle repository is only temporary. Second, backing up that
big repository is time consuming. Transferring all data in
the repository takes more than a week. Even if we use the
rsync for incremental backup, scanning 20 million files still
takes tens of hours. Using multiple repositories, we increase
the number of spindles which parallelizes data transfer. S-
plitting the repository into ten blocks can reduce the time
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Figure 3: The CEIP workflow. Dashed lines indicate
the points of job status change.

to copy the whole current repository to a few hours and
incremental backup to less than an hour.

A promising solution is to use the Hadoop Distributed
File system (HDFS), which uses commodity hardware to
create multiple replicas of the same document on different
machines. The HDF'S has been under active development in
the open source community, as well as by many consulting
companies that provide enterprise-level support, i.e., Cloud-
era. Under this approach, an application only has to deal
with a single repository, which exists on top of HDF'S, while
the reads and writes are handled by the file system itself.

3.6 Index Maintenance

The current indexing tool Solr (version 1.3) is not capa-
ble of performing real-time replication and as a result, we
are only able to perform bulky backups. The index contains
more than 2.6 million unique in-collection documents, and
takes more than 170GB of space. As the repository grows,
the index grows as well. Solr 4 has a replication feature and
guarantees (almost) real-time synchronization. The biggest
challenge in this upgrade is that Solr has changed its in-
dex format at least three times since Solr 1.3. There is no
method for transferring the index directly from Solr 1.3 to
Solr 4. As a result, we either have to go through interme-
diate versions (and iteratively update our index) before we
get to Solr 4 or simply reindex all metadata. The first plan
not only require lots of work but also adds unnecessary com-
plexity in the case that an intermediate upgrade fails. The
second plan starts from scratch but is more flexible, e.g., we
can upgrade the index schema as needed.

3.7 Databases

The database stores metadata, citations, and other rel-
evant information. Traditional CitesserX uses a relational
database to store all those information. We are currently
investigating the use of a graph database (Neo4j ®) to store
the structured data for CiteSeerX. There are several moti-
vations for doing this. For instance, a graph is a natural
representation of much of the structured data in CiteSeerX,

Shttp://www.neodj.org/



such as the citation graph or the co-authorship graph. It
is of interest to explore multi-hop paths on these graphs in
order to gain insight into the nature of scholarly big data;
however, it is generally infeasible to do this in real time with
a relational database since multiple joins usually need to be
performed. Thus, a graph database that has been designed
to support these types of queries may be useful. That be-
ing said, relational databases are known to scale well and be
reliable; thus, part of our migration investigation involves
evaluating the performance of existing graph databases to
see how they compare to relational databases at different
scales and for different types of queries.

4. SCHOLARLY INFORMATION

The platform provides not only document search and down-
load for users, but also various services to access finer schol-
arly information residing within scholarly big data, such as
metadata, citations, algorithms, figures, tables and so on,
which play important roles for building scholarly applica-
tions. Information extraction forms a crucial part of the
platform and affects the overall usability and quality of the
service due to the fact that the automatically extracted in-
formation is used as the metadata, which is used for search-
ing and interacting with the site and for data collection.
Given the fact that the platform integrates scholarly da-
ta from across the Web and is fully automated, extraction
needs to be robust to variations among different document
formats and styles and be scalable.

4.1 Metadata

Metadata of papers usually contains a title, authors, ab-
stract, venue, volume and issue (for journals), page num-
bers, publisher, publisher address, publish date, copyright
and ISBN (for books). It forms identifications of a schol-
arly document and thus plays essential roles for organizing
and searching scholarly data. State-of-the-art techniques for
metadata extraction are based on supervised machine learn-
ing such as Support Vector Machines (SVM) or Conditional
Random Fields, which work reasonable well for academic
papers within certain domains, but might have difficulties
in scaling up to big data in diverse formats and styles from
various fields. For example, CiteseerX uses a SVM-based
header extractor (SVMHeaderParse) for papers in comput-
er sciences [15]. However, we found this method performs
poorly on academic books [34].

How can we efficiently extract metadata for 100 million
scholarly documents with all possible publishing formats?
It is unrealistic to get enough human-labeled instances to
train a good extractor. Our practical solution contains t-
wo essential parts: first, “divide and conquer”; and second,
active learning based on Web knowledge.

We train multiple extractors for documents of different
publish genres including conference papers, journal, disser-
tations or theses, and academic books. A new document
will first be labeled as one of the categories by the classifier
of the crawler and then sent to the corresponding extractor.

In contrast to the previous SVMHeaderParse approach,
trained on only a small (< 1000) human labeled dataset [15],
we harvest the metadata from Web and then do text match-
ing back to the title page of a document to label each line.
For non-book documents, we harvest metadata from online
digital libraries such as DBLP, Pubmed, MAS, and Google
Scholar as ground truth; for book documents, we query

metadata from Google Books through its API using ISBN
search®. The ISBN can be accurately detected from books
by search regular expression patterns after the string “IS-
BN”. It includes two types, one for a 10-digit ISBN and
another for 13. As regular expressions, it appears as:
"i\s?5\s7b\s?n(10|[\s—]10)?[: —=]?[\s]{0,5}([\dz—]{13})’
"i\s7s\s?b\s?n(13|[\s—]13)?[: —=]?[\s]{0, 5}([\dz—]{17})’
We found 25% of our papers have matching counterparts in
DBLP and 10% of books can get accurate metadata from
Google Books, which gives us a large enough labeled data.
However, this approach also yields a great deal of redundant
information. For example, there are many papers from the
same journal or conferences with few varieties in features.
We thus apply active learning to select the representative
training examples [36].

4.2 Citations

Citations play an more important role for scholars to as-
sess and track the impact of scientific works, and to model
the evolution of research. Metrics based on number of cita-
tions have been widely studied to measure scientific achieve-
ment for scholars. Citation networks have also been studied
as plausible models of information flow and evolution.

To extract citations, we first need to accurately locate the
Reference or Bibliography block, which usually has obvious
indicators such as “References”, “Bibliography” or “Sources”.
For papers, we do a reverse search from the end. However,
books may have a bibliography at the end of each chapter.
Thus, we need to search bibliography against the whole body
of a book rather than in only the last few pages. If we find
a line containing only one of the three keywords and the
lines followed are ordered reference items, we identify it as
a bibliography block. We search the ordered number at the
beginning of each reference until there are no continuously
increasing numbers found in the following 30 lines. Citations
are then parsed using the ParsCit citation parsing tool [9].
Since it is primarily designed for papers, we improve the
parsed results using an external name dictionary of authors
and a thesaurus of venue names. Author names are collected
from CiteSeerX and ArnetMiner databases while a thesaurus
of venues is constructed based on rules and manual editing.
Furthermore, the citation context for each extracted citation
is stored, which facilitates further citation analysis.

While most previous work of citation analysis has focused
only on citations from papers, we found citations from aca-
demic books were also valuable and should not be neglected
in peer review research evaluation [34]. Thus, we will con-
nect papers and books to make a complete citation network
and provide for a more comprehensive research assessment.

4.3 Authors

Authors form an important component of a digital li-
brary. Therefore, most state-of-the-art digital libraries pro-
vide both document search and author search. In this sec-
tion, we discuss several topics related to author mining in
large-scale digital libraries and our experiences in mining
author information.

4.3.1 Author Profiling

The documents published by an author are great sources
to extract additional information. For example, the emails

Shttps: //www.googleapis.com/books/v1/volumes?q=isbn:
ISBN&key=API Key



and the affiliations are usually printed along with the au-
thor names in a paper; the paper contents are commonly
used to infer the research interest of the authors [5]. Papers
published by other researchers can also be used to infer an
author’s information. In the past, we utilized the reference
list and the referenced text extensively to obtain the list of
venues a researcher has published in and the key concepts
of target papers. In a complementary fashion, we also use
researchers’ professional webpages to retrieve more detailed
author information.

4.3.2  Author Disambiguation

There are two types of author ambiguity cases. First,
different authors may share the same name. For example,
DBLP shows that the author “Li Chen” published more than
60 papers in several different domains in 2013. In this case,
it is very likely that different “Li Chen”s have been incorrect-
ly regarded as one author. Second, an author’s name may
sometimes be represented in different forms. For example,
Dr. W. Bruce Croft could be recorded as “Bruce Croft”, “W.
B. Croft” or other name variations.

We use a Random Forest model trained on several features
to disambiguate two authors a and b in two different papers
p and g [28]. These features include the similarity between a
and b’s name strings, the relationship between the authoring
order of a in p and the order of b in ¢, the string similarity
between the affiliations, the similarity between emails, the
similarity between coauthors’ names, the similarity between
titles of p and ¢, and several other features.

A live digital library ingests new documents actively. New
documents may sometimes contain new evidence that can
disprove or invalidate a previously learned author disam-
biguation model. We are interested in investigating online
learning algorithms capable of incorporating new evidences
into the model on-the-fly.

4.3.3 Coauthorship

Authors’ collaborations are commonly inferred by their
coauthored papers and represented by a coauthorship net-
work, in which each node is an author, and two nodes are
connected if the two authors have coauthored.

Researchers have investigated various collaboration pat-
terns among scholars. The number of coauthors per paper
and the number of papers an author publishes have been
studied from a variety of disciplinary perspectives. We con-
ducted a longitudinal analysis of the coauthorship network
to reveal the evolution of collaboration and to predict future
collaborations [4, 16, 3]. We also employed graph measures
to discover experts of given queries [11].

4.4 Algorithms

Algorithms are ubiquitous in computer science and the
related literature that offer stepwise instructions for solving
computational problems. Researchers are constantly devel-
oping new algorithms to either solve new problems or al-
gorithms that improve upon the existing ones. With many
new algorithms being reported every year, it would be useful
for the platform to have services that automatically identi-
fy, extract, index and search the ever-increasing collection
of algorithms, both new and old. Such services could prove
useful to researchers and software developers alike looking
for cutting-edge solutions to their daily technical problems.

4.4.1 Algorithm Representations and Metadata

A majority of algorithms in computer science documents
are summarized and represented as pseudocode [29]. Three
methods for detecting pseudocode in scholarly documents
have been developed including rule based (PC-RB), machine
learning based (PC-ML), and combined (PC-CB) methods.
The PC-RB method extends the state-of-the-art approach.
The PC-ML method employs machine learning techniques to
extract sparse boxes from a document and classify each box
as either pseudocode or not using a novel set of 47 features.
PC-CB captures the benefits of both former methods. The
best performance in terms of F1 is achieved by the PC-CB
method with the combination of the rule-based method and
the majority vote of Logistic Model Trees, Random Forest,
and Repeated Incremental Pruning to Produce Error Reduc-
tion (RIPPER) classifiers.

4.4.2 Extracting and indexing

Indexable metadata is extracted for each detected pseu-
docode. Currently, the metadata of a pseudocode includes
its caption, textual summary, and that of the document
containing such a pseudocode (i.e. title, year of publica-
tion, abstract, etc.). The metadata is then indexed using
Apache Solr’. The search is done by textually matching
the search query with the textual metadata of the extract-
ed pseudocodes, and the retrieved pseudocodes are ranked
by the TF-IDF similarity score between the query and the
pseudocode metadata.

4.4.3 Challenges and future works

Being able to extract algorithm-specific metadata would
allow for categorizing, filtering, and deeper analysis of the
extracted algorithms. Algorithm-specific metadata includes
the algorithm’s name, inputs, outputs, runtime complexity,
target problems, and data structures. Extracting algorith-
m specific metadata is challenging because such information
normally cannot be extracted directly from the content in
the document containing the algorithms. Authors use differ-
ent styles when writing about their proposed algorithms, and
some may not even provide all the desired pieces of meta-
data. Another challenge occurs when a document contains
multiple algorithms, where further disambiguation is needed
to map the extracted matadata to correct algorithms.

Knowing what an algorithm actually does could shed light
on multiple applications such as algorithm recommendation
and ranking. Previously, we made a first attempt to mine se-
mantics of algorithms by studying the algorithm co-citation
network, where each node is a document that proposes some
algorithms, and each edge weight is the frequency of algo-
rithm co-citation [31]. We clustered the co-citation network
in order to obtain groups of similar algorithms.

One of our ongoing projects involves studying how algo-
rithms influence each other over time. This study would
allow us to not only discover new and influential algorithm-
s, but to also study how existing algorithms are applied in
various fields of study. In order to do this, we propose the
construction and study of the algorithm citation network,
where each node is an algorithm, and each direct edge rep-
resents how an algorithm uses other existing algorithms.

We showed that algorithm usage can be captured by an-
alyzing the algorithm citation context, and proposed a clas-
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sification scheme for algorithm citation function in scholarly
works [30]. The scheme consisted of 9 classes representing
possible ways in which an algorithm can be used. The 9
classes can be divided into 3 groups based on the authors’ at-
titude towards the cited algorithms: favorable, neutral, and
critical. Our future work explores the possibility of building
an automatic classifier to classify algorithm citation con-
texts, which would allow the automatic construction of a
large scale algorithm citation network.

4.5 Figures

Academic papers usually contain figures that report ex-
perimental results, system architecture(s), demos and so on.
Often, the data present in such figures cannot be found with-
in the text of the documents. Thus, extracting figures and
associated information would be important to better under-
stand the documents.

Figures can be embedded in PDF documents as raster
graphics (JPEG, PNG formats) or vector graphics (SVG,
eps). While it is trivial to extract raster images from PDF
documents (as they are embedded as data streams), it is
extremely hard to extract vector graphics from PDF doc-
uments. Vector graphics contain a set of instructions such
as “draw a line, rectangle or bezier curve” or “paint a tex-
t on screen”. PDF itself is a vector graphics format. The
operators for text and graphics are interleaved in a PDF
document and it is hard to understand which instruction
corresponds to a figure and which do not. Chao et al. [2]
proposed an approach for extraction of figures from PDF
documents, where each page in the document is converted
into an image and that resulting image is analyzed through
segmentation algorithms to detect text and graphics region-
s. We extended this work to improve the accuracy of the
segmentation algorithm through clustering techniques and
other heuristics. Among 230 random page images, we were
able to extract all figures correctly from 222 page images.

We used positional and font related information extract-
ed from digital documents for accurate extraction of figure
metadata. We proposed a rule based system that used these
features. These features are usually extracted using PDF
processing libraries such as PDFBox or XPdf but are not
generic enough. Therefore, we devised a machine learning
based system based on syntactic features extracted from on-
ly the text of the documents[6].

We extracted 90,000 figures and metadata from 160,000
documents published in chemical journals. We built a search
engine on top of that extracted metadata. We have incor-
porated a special ranking function to improve the search re-
sults. The search engine has been integrated in an universal
search engine which allows chemists to search on chemical
name, formula, full text, authors, tables and figures extract-
ed from documents|7].

Extraction of data from figures is a hard task and has
been attempted before[24] with limited success. Naturally,
to extract data from a figure we need to understand the
“type” of the figure first: whether it is a line graph, scatter
plot, bar chart, etc. We focused on analyzing line graphs
as they are common in research papers and specifically used
for reporting experimental results.

Following [25], we developed a classification algorithm for
a binary classification problem where we classify each figure
as a line graph or not. We trained our model on a set of 475
figures extracted from chemistry documents and tested on

Table 3: Collection and Usage Statistics

Statistic Value
#Documents 3.5 million
#Unique documents 2.5 million
#Citations 80 million

# Authors 3-6 million

#docs added monthly 300,000

#docs downloaded monthly | 300,000-2.5 million
Individual Users 800,000

Hits per day 2-4 million

50 figures. Overall classification accuracy for our model was
85%. We developed a suite of image processing algorithms
to find the X axis, Y axis, axes labels and data points in
the axis from line graphs. Future work involves extraction
of curves from the plotting region.

4.6 Others

Other types of scholarly information we have experience
with include tables [23], acknowledgments [22], table of con-
tents [38], and back-of-the-book indices [37, 35]. Tables are
widely used to demonstrate experimental results or statisti-
cal data in a condensed way and thus would be a valuable
source of information to search. Acknowledgments are ar-
gued to be an important attribution of gratitude that in
some cases refers to at least as much contribution as that of
the last author [22]. Table of contents serve as guidelines for
long documents such as conference proceedings, dissertation-
s and master theses, and academic books. Back-of-the-book
indexes, usually appearing near the end of a book, are col-
lections of words or phrases, often alphabetically arranged,
that help users locate information within the book.

S. ANALYTICS

Besides various services for mining scholarly information,
we also provide analytic services regarding users, queries
and logs. To enable those services, we mined information
from our server logs that includes the client’s IP address,
the client’s name, the time of the request, the requested
URL, the referrer URL, the user agent, the response code,
the amount of bytes sent back, and the session identifier.
The log files are processed using Pig scripts ¢, and each of
the above mentioned fields is imported into a Apache Hive
table stored in Hadoop’s HDFS °. We present some of our
analytic study results based on the logs generated during
the months of September 2009 to March 2013, totaling 100
GB of compressed files. The total number of imported hive
entries are 3,317,634,711.

Table 3 shows various approximate statistics related to
the size of the collection as well as its usage. There are
800,000 individual users in total and 2-4 million hits per
day. We found that requests have been received from more
than 200 countries world wide. Table 4 lists the top 10 coun-
tries from which requests originate along with their percent-
age of traffic. The top 10 countries account for more than
70% of CiteSeerX traffic, and 64% of download requests.
The top sources of traffic in order are Google, direct traffic,
Baidu, Bing, DBLP, Yahoo, Wikipedia, ScientificCommon-
s, and Google Scholar with Google accounting for 69% of

8http://pig.apache.org/
http:/ /hive.apache.org/



Table 4: Traffic from the Top 10 Countries

Country | Traffic % || Country | Download %
USA 28.86% || USA 21.95%
China 19.22% || China 11.72%
India 5.42% || India 10.66%
Germany 5.36% || UK 5.27%
UK 3.28% || Germany 3.8%
France 2.57% || Iran 2.39%
Tran 1.59% || Canada 2.33%
Japan 1.54% || France 1.96%
Canada 1.52% || Australia 1.84%
Australia 1.39% || Malaysia 1.62%
Other 29.25% || Other 36.41%

Table 5: Search Type Distribution

Search Type Number | Percentage

12,134,832 55.92%
Author 28,502,533 37.82%
Document 4,636,115 6.15%
Table 35,073 0.04%
Total 75,344,617 100%

the traffic. It is interesting to note that there are differ-
ences between the top 10 countries sorted by the number of
downloads and the top 10 of traffic.

CiteSeerX offers three types of search where users can per-
form document search, author search, and table search. Each
of these types of search is powered by a separate index. An
advanced search page is available on the document index to
complement the single query box default search. During the
period of this study, CiteSeerX received 75,344,617 search
requests. The proportion of search types are presented in
Table 5. The first row indicates missing search types which
default to a document search. As seen in the table, there is a
significant interest in searching for author names with 37%
of the search requests targeting the authors index. Equally
popular was advanced search where it was found that 38%
of the document search used the advanced search box.

By examining the queries with type document search we
found that the average length of a query is 3.85 terms. This
is significantly higher than the average Web search query
length of 2.35 terms [26] found in AltaVista and similarly
in Excite [18]. However more recent studies of Web search
query length put the average at 2.9 [39] and 3.08 [27]. It
is, therefore, believed that the number of query terms has
increased over time [27], which explains the difference in
the number of query terms we found with that observed
in the Elsevier’s ScienceDirect OnSite query logs where the
reported average query length was 2.27 [20].

The majority of the users, or 92.58% of them, looked at

Table 6: The Number of Result Pages a User Looks
at When Doing Document Search
Number of Pages | Percentage

92.58%
2.43%
1.32%
1.09%

0.7%

| Wl | ot =

Table 7: Number of Document Views per Query

#views ratio cumulative ratio
1 83.87% 83.87%
2 10.31% 94.18%
3 1.84% 96.02%
4 1.84% 97.86%
5 0.35% 98.21%
6 0.63% 98.83%
7 0.13% 98.96%
8 0.26% 99.22%
9 0.15% 99.37%
10 0.16% 99.53%

> 10 0.47% 100.00%

the first result page only, however, users were more likely
to look at 5 results pages than looking at 2, 3 or 4 pages
as shown in Table 6. This indicates that users either found
what they want on the first result page (or did not find it
and gave up), or were willing to explore more results in order
to find a satisfactory result. In the case of of author search,
99% of the users browsed one result page only.

We study the number of document views after submitting
a query. We ignore the sessions where users issue a query
but do not click on any returns. The results are present-
ed in Table 7. Most users click very few documents from
the returned list. This suggests that most users follow the
Cascade Model — a popular model where users view search
results from top to bottom and leave as soon as they find
a document of interest [10]. The multiple browsing model-
s [12], i.e., the models that assume a query will lead to more
clicks, play minor roles on CiteSeerX.

6. DATA, CODE AND API

We believe data sharing is important to foster collabo-
ration and research. However, due to the large size and
potential copyright issues, challenges exist in sharing our
data. Although the data is crawled from the public Web by
obeying site crawling policies, it is possible that some copy-
righted material is collected. From time to time we receive
requests from authors and publishers to remove documents.
However, we still believe it is beneficial to share data.

We use the Open Archives Initiative Protocol '° to share
the metadata. By accessing the OAI Harvest URL 1, it is
possible to download the metadata for all papers. This is
the easiest way to access the platform data and seems to be
widely used with an average of 4983 requests per month. We
also make dumps of our databases available on Amazon S3
for download. This has the benefit of alleviating some cost of
distributing the data since the cost of download traffic is paid
for by the user. Challenges still remain in how to distribute
the core repository, which contains the actual PDF papers
and extracted text. Besides the copyright issues, there are
other, more technical challenges inherent in distributing the
data, which currently is larger than 6TB [1]. Furthermore,
this repository is growing at a rate of about 10-20GB per
day thereby making it a challenge to keep this repository
synchronized with others over the Web.

CiteSeerXand related projects (such as the extraction mod-
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ules) are usually open-sourced under the permissive Apache
License Version 2. The motivation for doing this is to al-
low other research groups to run their own versions as well
as to allow the community to make improvements to Cite-
SeerXthat can be used to yet further improve the service
itself. The source code for CiteSeerXwas previously host-
ed on SourceForge'?; however, recently the source code has
been migrated to GitHub'® to enable better collaboration.

The platform provides a RESTful API in addition to the
OAI service. For example, CiteSeerExtractor 4 is a stand-
alone Web service that provides a RESTful API for informa-
tion extraction from scholarly documents. Based on the ex-
traction modules currently used in the platform, CiteSeerEx-
tractor can be integrated into any application that needs
to perform scholarly information extraction. This greatly
simplifies the information extraction process and allows for
centralized extraction that can easily be improved without
needing to distribute the improvements. CiteSeerExtractor
is an open source project publicly available on our GitHub
page, thereby making it easy for other research groups to
deploy their own versions of it and allow us to benefit from
any community improvements to the software.

7. SCHOLARLY APPLICATIONS

7.1 Citation Recommendation

RefSeer '% is a citation recommendation system that build-
s upon the platform mainly using citation information. Giv-
en either text from an abstract/description or part of a pa-
per, RefSeer presents both topic-related global recommen-
dation and citation-context based local recommendation.

For global recommendation, RefSeer internally computes
from the text a topical composition based on topic model-
ing [19]. This model associates terms in the citation context
and assumes that the words and citations within the citing
paper are generated from a topic-word and topic-citation
multinomial distribution, trained over all documents in the
CiteSeerX repository. For local recommendation, RefSeer
uses a citation translation model to learn the “translation”
probability of citing a document given a word Pr(d|w) [17].
It assumes that the citation context to be the “descriptive
language” and the “reference language” to consist of refer-
ences, where each referenced paper is considered as a “word”.
By applying translation model on the two languages, we can
compute the probability of a citation given a word.

7.2 Collaborator Discovery

CollabSeer !¢ is a search engine for discovering potential
collaborators for a given author [4]. It discovers potential
collaborators by analyzing the structure of a user’s coau-
thor network and research interests. Currently, CollabSeer
supports three different network structure analysis modules
for collaborator search: Jaccard similarity, cosine similarity,
and our relation strength similarity. Users can further re-
fine the recommendation results by clicking on their topics
of interest, which are generated by automatically extracting
key phrases from previous publications.

2http://citeseerx.sourceforge.net/
3https://github.com/SeerLabs
“http://citeseerextractor.ist.psu.edu:8080/static/index.html
Yhttp:/ /refseer.ist.psu.edu/

Shttp://collabseer.ist.psu.edu/

7.3 Expert Recommendation

CSSeer 7 is an expert discovery and related topic recom-
mendation system mainly targeted at Computer Science. It
is a highly automated system with little manual involvemen-
t. Given a term or phrase g for which an expert is needed,
the experts of ¢ are recommended based on both textual rel-
evance and the quality of their related published documents.
In addition, a list of related topics of ¢ is provided for ref-
erence. Compared to other few publicly available expert
recommenders, our system solely provides experts of related
topics. Users are more likely to obtain a comprehensive list
of experts by browsing through the experts of related topics
provided by CSSeer [5].

8.  CONCLUSION AND FUTURE WORK

We described an effort in building a scholarly big data
platform that aims to support searching and mining of (n-
early 100 million) scholarly documents in a large-scale set-
ting. Specifically, we presented an architecture based on
a virtual infrastructure using a private cloud with the de-
sign of the key modules, which included a focused crawler, a
crawl-extraction-ingestion workflow, and distributed reposi-
tories and databases. We developed various services enabled
by our data crawling, information extraction and analytics.
These services can be used to mine the scholarly informa-
tion residing in large scale documents and be used to build
various user-oriented applications, such as those that per-
form citation recommendation, expert recommendation and
collaborator discovery.

Our goal is to keep investigating this platform, both prac-
tically and theoretically. We are now integrating crawled
MSA data which could significantly increase the size of our
data. We are also constructing a scholarly knowledge graph
that links together all types of scholarly information and
entities, which could be billions of entities and links. This
could enable our platform to provide more semantic-based
and knowledge-based services.
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